Impact of Airport Capacity Expansion on CO₂ Emission: The Case of Hong Kong International Airport

Summary of Findings May 2015

Dr. Andrew Yuen Associate Director Aviation Policy and Research Centre

Impact of airport capacity expansion on CO₂ emission: The case of Hong Kong International Airport

Andrew Yuen, The Chinese University of Hong Kong

Janina Scheelhaase and Martin Schaefer German Aerospace Center (DLR)

(The results are preliminary)

Outline

- 1. Motivation and Objectives
- 2. Background
- 3. Methodology and Results
- 4. Other Issues flight diversion
- 5. Quantifying the Carbon Costs

• Due to the increasing demand in air traffic, lots of airports considered capacity expansion

• Those expansion plans usually involves huge government investment

• The construction and the operation of the new capacities may have significant impacts to the surroundings

Cost-Benefit Analysis

Benefits of airport expansion

- Passengers' travel benefits
- Airport and airline
- Other related industries, such as tourism and logistics

Costs of airport expansion

- Infrastructure costs
- Environmental costs

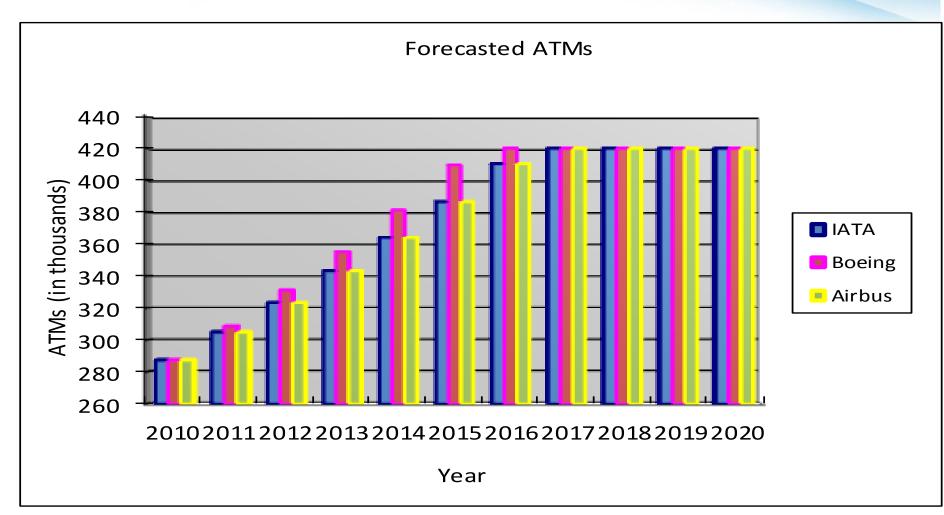
Cost and Benefit analysis for New Runway in London Heathrow Airport

£2.3 billion
£4.0 billion
£5.2 billion
£6.2 billion
£2.5 billion
£7.8 billion
£5.0 billion

Source: A New Approach to Evaluating Runway 3, New Economics Foundation, 2010

Aviation and climate change

3% of the total man-made contribution (IPCC, 2007)


- Rapid Growth
 - CO₂ increased by a factor of about 1.5 from 1990 2000
 - projected continue to grow by around 3-4% annually

 To provide a scientific methodology to estimate the CO₂ emissions due to airport expansion

• To understand issues in estimating CO₂ emissions related to capacity expansion

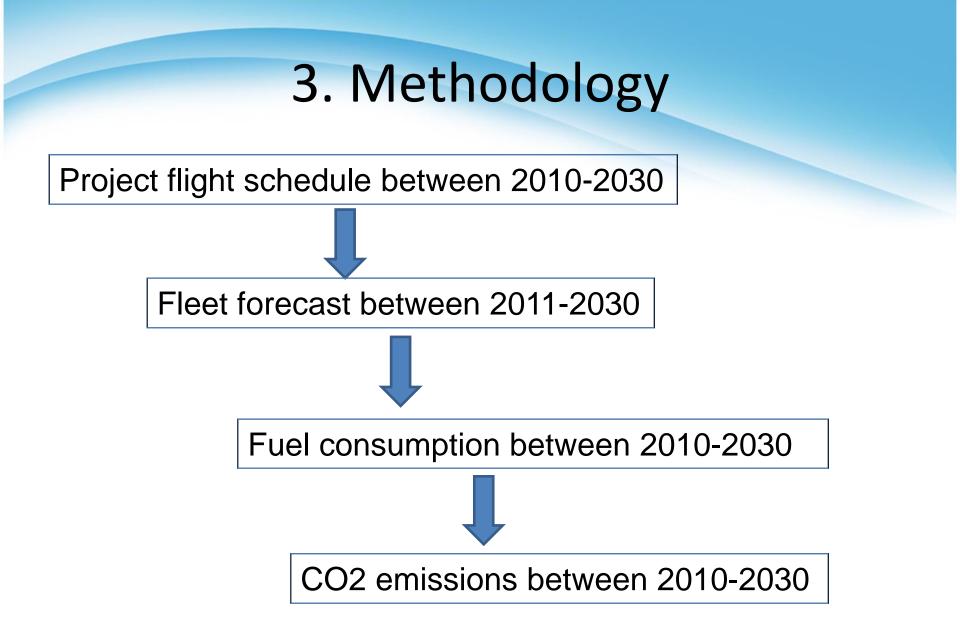
• To use HK airport expansion as a case to illustrate the related issues in estimation

Capacity constraint (ATM:420,000) at the Hong Kong Airport

- In June 2011, the Airport Authority of Hong Kong (AAHK) has held a public consultation for its Hong Kong International Airport (HKIA) Master Plan 2030.
- Option 1: Two-Runway System
 - practical maximum annual (air traffic movement) ATMs is 420,000
 - The maximum capacity is expected to be reached in 2017
- Option 2: Three-Runway System
 - practical maximum annual ATMs would be 620,000
 - The maximum capacity is expected to be met by 2030

- During the consultation (June–Sep 2011), a lot of public arguments on environmental issues were raised and could not reach a consensus
- Environmental groups and politicians complained that HKIA failed to provide a full information of the environment impacts

- Hong Kong Environmental Impact Assessment (EIA)
 - Complained by NGOs that the requirements are not fulfilled the international standards
 - Mainly concerned about local impacts; thus CO_2 is not included in the assessment


3. Methodology

 To calculate CO₂ emissions by all flights to/from HKIA under cases with and without 3rd runway

Case I	Case II
Two runway	Third runway

3. Methodology

- Limitations
 - Passenger flights are only considered in the study (the total can be calculated by assuming fixed ratio between passenger and cargo flights)
 - Each airline's market share will keep constant in the study period
 - The effects of other emission control measures is not taken into account, like EU ETS.

Flight Movements Forecast 2010-2030

- Obtain the flight plan in 2010, which includes all OD markets from/ to HKIA
- Have forecasted growth rates in each region from 2011 – 2030
- Forecast the flight movement for each OD markets from 2011-2030
- Take into account the capacity constraint for 1st case

Data Sources

1. Flight schedule in 2010

OAG (O-D pair information; Cargo and Passenger; Frequency; aircraft type)

Bangkok (Intl)		Hong Kong(Intl)		Cathay Pacific		
Thailand Thailand	HKG	China	CX	Airways	744	BOEING 747-400
Bangkok (Intl)		Hong Kong(Intl)		Cathay Pacific		
Thailand Second	HKG	China	CX	Airways	330	AIRBUS INDUSTRIE A330
Bangkok (Intl)		Hong Kong(Intl)		Cathay Pacific		
Thailand	HKG	China	CX	Airways	777	BOEING 777
Bangkok (Intl)		Hong Kong(Intl)		Cathay Pacific		
Thailand	HKG	China	CX	Airways	773	BOEING 777-300
Bangkok (Intl)		Hong Kong(Intl)		Cathay Pacific		AIRBUS INDUSTRIE A340-
Thailand State	HKG	China	CX	Airways	343	300
Bangkok (Intl)		Hong Kong(Intl)				
Thailand	HKG	China	EK	Emirates Airlines	773	BOEING 777-300

2. Forecasted growth rate

- IATA, Boeing and Airbus (Regional growth rates)

Fleet Forecast 2010 - 2030

Approach for Simplified Fleet Forecast (DLR):

- Based on typical aircraft lifetimes (retirement curves) and assumptions on aircraft production periods.
- Aircraft types are changed iteratively by a software module such that target market shares of aircraft types are reached.

Calculation of Fuel Burn and CO₂ Emissions

DLR VarMission Aircraft Performance Software

Approach for Emissions Calculation:

- Bottom-Up Approach: Simulation of each individual flight for the purpose of emissions estimation.
- Aircraft Models:
 - Current aircraft types from EUROCONTROL BADA v3.9
 - Aircraft of the near future: Models and assumptions from Schaefer (2012)

1kg fuel consumption = 3.155kg CO2 emission

3. Results – Fuel consumption

Comparison between BAU and 3rd runway cases in fuel consumption

Year	Difference (tons)	%Difference
2017	32,038	0.4%
2018	235,900	3.1%
2019	367,800	4.8%
2020	516,922	6.8%
2021	676,081	8.9%
2022	770,172	10.1%
2023	875,520	11.5%
2024	1,034,079	13.6%
2025	1,191,909	15.7%
2026	1,251,568	16.4%
2027	1,352,755	17.8%
2028	1,438,636	18.9%
2029	1,537,876	20.2%
2030	1,612,115	21.2%

3. Results -CO2 emission


Comparison between BAU and 3rd runway cases

Year	Difference (tons)	%Difference
2017	100,921	0.4%
2018	743,086	3.1%
2019	1,158,571	4.8%
2020	1,628,304	6.8%
2021	2,129,655	8.9%
2022	2,426,041	10.1%
2023	2,757,889	11.5%
2024	3,257,349	13.6%
2025	3,754,512	15.7%
2026	3,942,440	16.4%
2027	4,261,180	17.8%
2028	4,531,705	18.9%
2029	4,844,311	20.2%
2030	5,078,163	21.2%

4. Further Issues

- 1. Flight diversion
 - No capacity; flights diverted to other airports
- 2. Airlines' responses to limited capacity constraint
 - Increases the aircraft size

4. Issues -Flight diversion

4. Issues -Flight diversion

• Explore the impacts of flight diversion on the Δ Emissions with and without 3rd runway

 Previously, we considered the extreme case with 0% flight diversion – the air traffic will disappear if no capacity.

 Three more cases to consider: 30%, 50% and 80%

4. Issues -Flight diversion

	% Difference			
Year	0% diverted	30% diverted	50% diverted	80% diverted
2017	0.4%	0.3%	0.2%	0.1%
2018	3.1%	2.2%	1.5%	0.6%
2019	4.8%	3.4%	2.4%	1.0%
2020	6.8%	4.8%	3.4%	1.4%
2021	8.9%	6.2%	4.4%	1.8%
2022	10.1%	7.1%	5.1%	2.0%
2023	11.5%	8.1%	5.8%	2.3%
2024	13.6%	9.5%	6.8%	2.7%
2025	15.7%	11.0%	7.8%	3.1%
2027	16.4%	11.5%	8.2%	3.3%
2028	17.8%	12.4%	8.9%	3.6%
2029	18.9%	13.2%	9.5%	3.8%
2030	20.2%	14.1%	10.1%	4.0%

If 30% flights diverted, ∆Emissions with and without 3rd runway is 14.1%

5. Quantifying the emissions

• Monetarize the emission costs

	Method	US \$
Australian	Carbon Tax	22
EU	Trading price	10
US EPA	Cost of Damage	39
Stern Review (2007)	Cost of Damage	30
CX Offset Prog	Abatement Cost	3

5. Quantifying the emissions

 Additional annual CO2 Costs due to third runway in 2030 and afterwards

	US million\$
Australian	111.7
EU	50.8
US EPA	198.0
Stern Review (2007)	152.3
CX Offset Prog	15.2

Thank you!