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Abstract

Across key domains, human expert assessments and crowd annotations are essential for la­

beling data to train machine learning models, and constitute a pathway through which societal

biases are learned by algorithms. In this research, we propose a machine learning­based frame­

work to produce a relative assessment of the extent of bias contained in labels produced by dif­

ferent sources, when gold standard labels are costly or difficult to acquire and thus available for

only a small set of instances. We provide theoretical guarantees, and we then show empirically

that our method outperforms the commonly used alternative of relying on statistical parity to

assess biases reflected in human assessments. The proposed approach lays the groundwork to­

wards increased transparency in labelers’ biases and offers an important building block towards

mitigating algorithmic bias stemming from biased labels.
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1 INTRODUCTION

Human­generated assessments are a prevalent source of labels used to train machine learning mod­

els in many important domains. This includes judgments made by expert workers, such as recruiters

who evaluate job applicants, as well as crowdsourced annotations made by likely inexpert annota­

tors through crowdworking platforms, e.g., Amazon Mechanical Turk to help in the detection of fake

news. Societal biases encoded in human assessments have been highlighted as an important source

of algorithmic unfairness (e.g. Suresh and Guttag, 2019; Violago and Quevada, 2018). For example,

research has established that labels used to train AI recruiting tool showed bias against women (e.g.

Dastin, 2018; Kodiyan, 2019); classifiers can have unfair biases toward certain groups of people if

the training data made by humans exhibit such biases (Feldman, 2015). Importantly, assessing label­

ers’ biases is key for assessing the usability of human­generated labels for training ML models, and

mitigating the risk of encoding decision makers’ biases in algorithmic predictions.

Reducing biases in human assessments has also long been a concern in organizational settings,

which has in turn motivated quantitative approaches to measuring it. The most prominent metric re­

lies on assessing selection rates, estimating a labeler’s bias by the difference of the proportion of pos­

itive labels assigned to instances between different protected groups (Mehrabi et al., 2021). While

this metric is easy to estimate, because it does not consider the relationship with a ground truth or

gold standard, it fails to differentiate between correct and erroneous labels. On the other hand, met­
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rics that assess disparities in errors, such as false positive rates (Hardt et al., 2016), rely on the avail­

ability of a gold standard to directly estimate whether a decision label matches the true label for a

given instance. Yet, the lack of gold standard labels for the same instances for which human assess­

ments are available precludes the use of these metrics to assess human biases.

Given assessing labeling bias is needed for assessing the usability of human­generated labels

for training ML models and for mitigating the risk of encoding labeling biases in algorithmic predic­

tions, in this work we aim to develop the groundwork towards reliable assessments of relative biases

in human­generated labels with respect to a desired gold­standard. In particular, we aim to recover

the correct ranking of labelers by their relative decision (labeling) biases.

In addition to labelers’ data, our method utilizes a key source of data that is frequently available:

gold­standard labels for a small, and often disjoint, pool of instances. Such limited gold­standard la­

beled instances are acquired routinely in some contexts, and they can be compiled in a wide variety

of contexts to assess experts or other decision makers. In particular, gold­standard labeled instances

are often acquired from costly expert panels to constitute a gold­standard when assessing individual

experts’ labels, and from scarce professional annotators that constitute a gold­standard for assessing

crowdsourced labels. The proposed methodology can effectively leverage large amounts of labelers’

biased/noisy labels and a small disjoint set of gold standard data to produce a relative bias assess­

ment of human­generated labels. Lastly, in this paper, we consider bias defined as the difference in a

given type of error of interest (e.g. false positives) across different sensitive groups, but we also find

that our approach effectively applies to different definitions of bias as well.

We first formalize the problem of relative bias assessment when gold­standard labels are only

available for a disjoint pool of data. We then propose a machine learning­based solution to this prob­

lem and provide theoretical guarantees. Lastly, we evaluate our approach and compare its perfor­

mance with the benchmark, selection rate (SR), across different settings and find that the proposed

approach yields robust performance, and produces relative assessments that are either superior or

otherwise comparable to the baseline.
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2 RELATEDWORK

The risks of learning from noisy or biased labels are a well­known concern in machine learning.

In the context of crowdsourcing, the quality of the labels obtained has been subject to doubt (Nowak

and Rüger, 2010), and the impact of different aggregation mechanisms when multiple labels are

available per instance has been studied (Davani et al., 2021). Separate lines of works develop al­

gorithms for acquiring (Gao and Saar­Tsechansky, 2020) and learning from noisy labels (Li and

Bradic, 2018), with a large body of work studying the robustness of such approaches (e.g. Menon

et al., 2016). Crucially, these methods typically assume forms of noise that deviate from the scenar­

ios in which multiple labelers share incorrect beliefs, which is particularly plausible when the goal is

to assess labelers’ bias, as these may be reflective of widely held societal stereotypes. Our research

contributes to this body of work by proposing methodology to assess relative biases across labelers

without assuming that the majority will be correct nor requiring the modification of the data collec­

tion process, which we achieve by leveraging a small disjoint pool of gold­standard labels.

The problem of assessing human bias and decision quality has been a subject of study across

disciplines. There are works focusing on evaluating cognitive bias (e.g. De Martino et al., 2006; Co­

hen, 1993; Aczel et al., 2015; Chapman and Elstein, 2000) serving different goals and using differ­

ent methodological approaches than ours, including measuring individual differences in cognitive

biases, improving rational thinking and mediating decision biases emotionally or psychologically.

Relatedly, there exist works evaluating decision makers’ biases among individuals with special traits,

for example, alcohol dependence (AD) (Miranda Jr et al., 2009). Other related work addresses the

problem of either ranking or directly assessing experts’ overall decision accuracy with scarce gold

standards, e.g., (e.g. Dong et al., 2021; Geva and Saar­Tsechansky, 2021). However, these works do

not consider assessing labelers’/decision­makers’ biases; furthermore, Geva and Saar­Tsechansky

(2021) also do not consider how ground truth data can be brought to bear. In the context of crowd­

sourcing, researchers have estimated decision reliability based on workers’ various behavioural and

demographic traits, e.g., (e.g. Kazai et al., 2013). Yet, these works evaluate decision quality by cen­
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tering accuracy, while neglecting the risks of biases that may be contained in human­generated labels

and potentially shared among the majority of labelers, and which our work aims to assess.

As part of the approach proposed in this paper, we apply algorithmic fairness methodologies de­

veloped in the recent years. Bias mitigation strategies broadly fall under three lines of work: casual

fairness (e.g. Barabas et al., 2018), individual fairness (e.g. Binns, 2020), and group fairness (e.g.

Kamiran and Calders, 2010). Our proposed method leverages the fact that ML models are prone to

replicating bias contained in training labels, and we thus also integrate algorithmic fairness method­

ologies to disentangle the bias introduced during the learning process from the bias coming from the

human labels themselves. We do so by implementing a group fairness strategy to mitigate bias with

respect to the observed labels via a post­processing approach grounded on Hardt et al. (2016).

3 PROBLEM FORMULATION

We consider a set ofK sources of human labels, such as crowd labelers or domain experts,

L = {L1, ..., LK}, whose decisions Y ′ = {Y ′1, ..., Y ′K} are encoded in historical data of their deci­

sions. In addition, we consider settings where a small set of gold standard labels, GS = {Xl, Yl}ml=1

is available for instances that may not overlap with any of the labelers’ own decision sets. Y is the

gold standard label vector, available for the set GS, and likely unavailable for the labelers’ instance

sets S = {SLk}Kk=1, where SLk indicates labeler Lk’s instance set. Figure 1 illustrates our settings,

including the labelers’ decision sets S (left) and a non­overlapping GS data (right).
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Figure 1. An illustration of labelers’ decisions set S (left) and a non­overlapping set with gold­
standard labels, GS (right).

For a given labeler, Lk, the labeler’s assessment for each instance i, Y ′k
i ∈ {0, 1} and its fea­

ture vectorXk
i ∼ P(X ), are available, such that each labeler has an associated set of instances

SLk
= {Xk

i , Y
′k
i }

nLk
i=1, where nLk is the number of instances labeled by labeler Lk. The sets of

instances assessed by different labelers need not overlap but should be drawn from the same class

distribution. We seek to produce relative assessment of labelers’ decision biases, defined as the label­

ers’ relative ranking by their respective biases, where bias can be the difference in true positive rates

(TPRs) across groups (GAP) defined by a sensitive attribute A (De­Arteaga et al., 2019), for exam­

ple, A = a,∼ a (in Eq.1). We consider this measure throughout this paper, but have also found that

our approach also applies effectively for different metrics of biases, such as the difference in false

positive rates (FPRs) across groups.

GAP k
Y ′|Y, A = TPR k

Y ′|Y, a − TPR k
Y ′|Y,∼a (1)

We explore how to leverage scarce and costly gold standard data to assess biases in labelers’

decisions. For example, labelers may correspond to a group of crowdworkers or other non­experts,

tasked with identifying misinformation in online news stories, which has been proposed as a scalable

solution to mitigate misinformation (Allen et al., 2020). In controlled experiments, labelers biases in
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this context have been assessed by collecting labels from professional fact­checkers and from crowd­

workers for an overlapping pool of cases (Allen et al., 2020). Given the experts limited accessibility,

this is both costly and not scalable. In this setting, our work could enable the assessments of relative

bias of individual labelers or different sources of labels in newly collected crowdsourced labels (so

as to improve learning misinformation detection models from the data) using a previously existing

pool of professional assessments.

4 METHOD

This section first introduces the proposed methodology, then briefly provides theoretical reason­

ing and guarantees, and finalizes with a detailed description of parameter tuning.

Machine­learning­based labelers’ Bias Assessment (MBA)

The proposedMachine­learning­based labelers’ Bias Assessment (MBA) method leverages a

typically problematic property of ML models, which are prone to reproducing biases contained in

training labels. The proposed approach first trains models to predict each labeler’ assessments, yield­

ing a set of models {Bk}Kk=1, where each model is a mapping Bk : Xk 7→ Y ′k, induced from la­

beler Lk’s data set, SLk . We ultimate aim to use the models {Bk}Kk=1 to infer labelers’ relative bi­

ases. However, biases contained in the models will have multiple sources; in particular, some biases

may be introduced during model training and not correspond to (and thereby might compound) the

labeler’s biases. Thus, the second stage of the proposed algorithm applies a bias mitigation strat­

egy to counter bias introduced during the learning phase, which assesses disparate deviations of a

model’s prediction Ŷ with respect to the label it is trained to predict, Y ′. We do so by proposing a

recall­versus­precision ratio (RPR) constraint via post­processing, where we consider the group­

specific recall and precision, equivalent to true positive rate and positive predictive value of models’

predictions Ŷ with respect to labelers’ decisions Y ′ given in a protected group, namely TPR Ŷ |Y ′, A

and PPV Ŷ |Y ′, A. We then apply the set of post­processed models {Bk}Kk=1 to make predictions

over the set GS. Finally, we estimate the relative assessment of the labelers’ decision bias, defined



A ML­based Framework towards Assessment of Labelers’ Biases

in Equation 1 by assessing biases of {Bk}Kk=1 with respect to Y , i.e., GAP Ŷ |Y, A.

Figure 2. Method Key Steps

Algorithm 1:MBA

1 Algorithm MBA({SLk}Kk=1, GS):
2 foreach SLk ∈ {SLk}Kk=1 do train base model B(SLk) on SLk // Step 1
3 foreach Bk ∈ {Bk}Kk=1 do
4 {Ŷ k} ← use Bk to classify ∀Xk

i ∈ SLk

5 Calculate {c′kA=a, c
′k
A=∼a} based on Eq.16

6 copt. ← Algorithm 2: Find Optimal C({c′kA=a, c
′k
A=∼a}Kk=1)

7 {πk
A=a, π

k
A=∼a}Kk=1 ← compute thresholds of {Bk}Kk=1 with copt. // Step 2 ends

8 foreach Bk ∈ {Bk}Kk=1 do
9 {Ŷ }ml=1 ← use Bk with [πk

A=a, π
k
A=∼a] classify GS = {Xl, Yl}ml=1

10 GAP k
Ŷ |Y, A = TPR k

Ŷ |Y, a − TPR k
Ŷ |Y,∼a

11 return {GAP Ŷ |Y, A}Kk=1 // Step 3 and 4 end

Figure 2 shows the four key steps in our approach, and the complete procedure is detailed in

Algorithm 1 MBA.

Theoretical Analysis

We now show that, given the correct functional form specification of the labelers’ models, i.e.,

functional form of the relationship between the dependent variable and each independent variable,

f : X 7→ Y ′, our method can recover the correct relative bias assessments of human labelers.

Lemma. If the correct functional form specification of each labeler’ model B, a mapping f : X 7→

Y ′ is known, then Ŷ ⊥⊥ Y |Y ′ and also Y ′ ⊥⊥ Y |Ŷ .
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Algorithm 2: Find Optimal C

1 Algorithm Find Optimal C({c′j, A=a, c
′
j, A=∼a}Kj=1):

2 [cmin, cmax]← minimum and maximum of {c′j, A=a, c
′
j, A=∼a}Kj=1

3 cstep ← cmin

4 do
5 foreach SLj

= {Xj
i , Y

′j
i }

nj

i=1 ∈ {SLj
}Kj=1 do /* T-fold cross-validation */

6 Generate T stratified by A = a,∼ a splits: {Xj, Y ′j}Tt=1
7 Train a model on the train splits and find corresponding thresholds based on cstep

and the test split
8 πp

j, A=a, π
p
j, A=∼a ← average({πt

j, A=a, π
t
j, A=∼a}Tt=1)

9 cstep ← cstep+ step_p
10 while cstep ≤ cmax

11 steps = cmax−cmin

step_p

12 copt. ← cstep which yields the min({std({TPRj,A=∼a}Kj=1)p}
steps
p=1 )

13 return copt.

Proof. Given the correct functional form for fk : Xk 7→ Y ′
k then Ŷk = Yk

′ + ϵ where the ϵ is the

constant term; and thus, ŶkYk|Yk
′. Analogously, if Yk

′ = Ŷk − ϵ, then Yk
′Yk|Ŷk. u

Theorem. Given the correct functional form for the labelers models (f : X → Y ′), then there exits

a ratio
TPRl

Ŷ |Y ′, A
PPV l

Ŷ |Y ′, A
=

TPRk
Ŷ |Y ′, A

PPV k
Ŷ |Y ′, A

= c, such that if the biases exhibited in labelers l and k’ models

are folllowing GAP l
Ŷ |Y, A > GAP k

Ŷ |Y, A, then the decision biases of this pair of labelers are also

following GAP l
Y ′|Y, A > GAP k

Y ′|Y, A, where GAP i
Ŷ |Y, A = TPR i

Ŷ |Y, a − TPR i
Ŷ |Y,∼a

and

GAP i
Y ′|Y, A = TPR i

Y ′|Y, a − TPR i
Y ′|Y,∼a.

Proof. Given GAP l
Ŷ |Y, A > GAP k

Ŷ |Y, A, this can be rewritten as:

P (Ŷl = 1|A = 0, Y = 1)− P (Ŷl = 1|A = 1, Y = 1) >

P (Ŷk = 1|A = 0, Y = 1)− P (Ŷk = 1|A = 1, Y = 1)

(2)

then

P (Y ′
l = 1|A = 0, Y = 1)− P (Y ′

l = 1|A = 1, Y = 1) >

P (Y ′
k = 1|A = 0, Y = 1)− P (Y ′

k = 1|A = 1, Y = 1)

(3)
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It is also true that,

P (Ŷi = 1|A = a, Y = 1) ∗ P (Y ′
i = 1|A = a, Y = 1, Ŷi = 1) =

P (Ŷi=1,A=a,Y=1)
P (A=a,Y=1)

∗ P (Y ′
i =1,A=a,Y=1,Ŷi=1)

P (A=a,Y=1,Ŷi=1)
=

P (Y ′
i =1,A=a,Y=1,Ŷi=1)

P (A=a,Y=1)
=

P (Y ′
i = 1, Ŷi = 1|A = a, Y = 1)

(4)

By rearranging eq.4, we have

P (Y ′
i = 1, Ŷi = 1|A = a, Y = 1) =

P (Ŷi = 1|A = a, Y = 1) ∗ P (Y ′
i = 1|A = a, Y = 1, Ŷi = 1)

(5)

It is also true that,

P (Y ′
i =1,Ŷi=1|A=a,Y=1)

P (Y ′
i =1|A=a,Y=1)

=
P (Y ′

i =1,Ŷi=1,A=a,Y=1)

P (A=a,Y=1)
∗ P (A=a,Y=1)

P (Y ′
i =1,A=a,Y=1)

=

P (Ŷi = 1|Y ′
i = 1, A = a, Y = 1)

(6)

By rearranging eq.6,

P (Y ′
i = 1, Ŷi = 1|A = a, Y = 1) =

P (Y ′
i = 1|A = a, Y = 1) ∗ P (Ŷi = 1|Y ′

i = 1, A = a, Y = 1)

(7)

From eq.5 and eq.7,

P (Ŷi = 1|A = a, Y = 1) ∗ P (Y ′
i = 1|A = a, Y = 1, Ŷi = 1) =

P (Y ′
i = 1|A = a, Y = 1) ∗ P (Ŷi = 1|Y ′

i = 1, A = a, Y = 1)

(8)

By rearranging eq.8,

P (Ŷi=1|A=a,Y=1)
P (Y ′

i =1|A=a,Y=1)
=

P (Ŷi=1|Y ′
i =1,A=a,Y=1)

P (Y ′
i =1|Ŷi=1,A=a,Y=1)

(9)
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From Lemma 13, it is true that Ŷ Y |Y ′, and Ŷ Y |A, Y ′; therefore,

P (Ŷi = 1|A = a, Y ′
i = 1) = P (Ŷi = 1|Y ′

i = 1, A = a, Y = 1) (10)

and

P (Y ′
i = 1|A = a, Ŷi = 1) = P (Y ′

i = 1|Ŷi = 1, A = a, Y = 1) (11)

From eq.9, eq.10, and eq.11, we have

P (Ŷi=1|A=a,Y=1)
P (Y ′

i =1|A=a,Y=1)
=

P (Ŷi=1|Y ′
i =1,A=a)

P (Y ′
i =1|Ŷi=1,A=a)

(12)

Note that right hand side of eq.12 is the ”recall (TPR Ŷ |Y ′, A) versus precision (PPV Ŷ |Y ′, A) ratio”

and we let the ratio equal to a constant c, so

P (Ŷi=1|Y ′
i =1,A=a)

P (Y ′
i =1|Ŷi=1,A=a)

=
TPR i

Ŷ |Y ′, A
PPV i

Ŷ |Y ′, A
= c (13)

From eq.13, it is true that

P (Ŷi=1|A=a,Y=1)
c

= P (Y ′
i = 1|A = a, Y = 1) (14)

Given eq.2 above:

P (Ŷl = 1|A = 0, Y = 1)− P (Ŷl = 1|A = 1, Y = 1) >

P (Ŷk = 1|A = 0, Y = 1)− P (Ŷk = 1|A = 1, Y = 1)

(2)
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dividing both sides by c, we have:

P (Ŷl = 1|A = 0, Y = 1)

c
− P (Ŷl = 1|A = 1, Y = 1)

c
>

P (Ŷk = 1|A = 0, Y = 1)

c
− P (Ŷk = 1|A = 1, Y = 1)

c

(15)

which is equivalent to

P (Y ′
l = 1|A = 0, Y = 1)− P (Y ′

l = 1|A = 1, Y = 1) >

P (Y ′
k = 1|A = 0, Y = 1)− P (Y ′

k = 1|A = 1, Y = 1)

(3)

u

Parameter Selection

In this section, we discuss how we derive the ratio c in Theorem to allow recovery of labelers’

biases. Note that the ratio c can be simplified as follows:

c =
TPR Ŷ |Y ′, A
PPV Ŷ |Y ′, A

=
TP

TP+FN
TP

TP+FP

= TP+FP
TP+FN

= |Ŷ=1,A=a,∼a|
|Y ′=1,A=a,∼a| (16)

Eq.16 reveals the relationship between a labeler model’s positive predictions, Ŷ = 1, A = a,∼

a, and the actual labeler’s positive decisions, Y ′ = 1, A = a,∼ a for a given group A = a or

A =∼ a. This relationship implies a corresponding desired probability threshold for classification of

instances from each protected group.

There are multiple possible values of c that can satisfy the ratio in Eq.16, each corresponding

to a different probability threshold. We use cross validation (cv) to identify a value c. Once c is de­

termined, we adjust the probability threshold of each model to achieve the ratio c. Note that prior to

enforcing the desired threshold on all the labelers’ models, each model has an initial threshold for

each protected group variable value, given by {π′
A=a, π

′
A=∼a} = {0.5, 0.5}. The ultimate threshold
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pairs, given by πk
A=a and πk

A=∼a for labeler Lk, is the averaged across all cv iterations. The proce­

dure for tuning parameter c and identifying the ultimate threshold pair are detailed in Algorithm 2:

Find Optimal C.

Once a threshold is identified, each labeler model Bk and the corresponding thresholds pair

πk
A=a and πk

A=∼a, are applied to classify the gold standard instances in GS, based on which the

model’s prediction biases are computed (8­10 lines in Algorithm 1: MBA), and subsequently ranked.

5 EMPIRICAL EVALUATION

To evaluate our method, we conducted empirical evaluations using simulation studies based on

four publicly available datasets: Adult, also known as “Census Income” dataset, Credit dataset from

UCI, predicting the default payments of credit card clients 1, Employees Evaluation for Promotion

(Employee) dataset from Kaggle2, and Hospital Readmission Rates dataset from Kaggle 3. The simu­

lation studies offer controlled settings to allow us to compare the proposed approach with the alterna­

tive benchmark, SR, under a variety of settings, including different magnitudes of labelers’ decision

biases; different class distributions; and different types of biases, such as when labelers exhibit cor­

rect within­group orderings but have different decision thresholds conditioned on groups, and incor­

rect within­group orderings driven by the misuse of an interaction variable.

Gold standard labels. We begin by considering a setting where the prevalence of the positive la­

bels is constant across sensitive groups, which yields a scenario where the baseline, SR, may appear

to be a sensible choice, given unbiased labels should yield no difference in selection rates across

groups. In order to evaluate our method’s performance under different class distributions, we con­

sider two scenarios: a positive label prevalence of 20% and 30%, respectively. Note that these two

distributions will correspond to settings in which the positive class is smaller, which often arise in

practice, e.g., a smaller proportion of candidates would be selected from a large pool of applications.
1https://archive­beta.ics.uci.edu/dataset/350/default+of+credit+card+clients
2https://www.kaggle.com/muhammadimran112233/employees­evaluation­for­promotion
3https://www.kaggle.com/code/iabhishekofficial/prediction­on­hospital­readmission
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We then select a pool of 400 instances with synthetic gold­standard labels from each protected group,

randomly sampled, as the disjoint set of gold standard data.

Decision Simulation. We run experiments under two types of decision simulations correspond­

ing to two scenarios of interest: “correct within­group ordering” and “incorrect within­group order­

ing”. For the Adult dataset, for example, the “correct within­group ordering” setting means that a la­

beler infers that women are less likely than others to earn a high income, and thus applies a different

threshold for this group, yielding a predefined TPRY ′|Y, A=women, i.e., true positive rate of labelers’

decisions with respect to the gold standard labels within the women group. We assume that labelers

correctly assess men, except for random noise that yields an average TPRY ′|Y, A=men = 0.95. In the

“incorrect within­group ordering” setting, we consider labelers’ misuse of an interaction term result­

ing in biased decisions. Specifically, the interaction sex × age reflects how a labeler relates age with

sex; negative deviations from the true coefficient correspond to a higher degree of bias, e.g., assum­

ing that older women are more likely to earn less, for instance.

It is important to note that even though our theoretical analysis provides guarantees when the

functional form specification of the labelers’ models is correct, our empirical assessment does not

make this assumption. The results show that without knowing the correct functional form, i.e., using

a different functional form to simulate labelers decisions and for the labelers’ models, our approach

remains effective under these settings.

Benchmark. We evaluated our proposed approach relative to the ”Selection Rate” (SR) bench­

mark, which is perhaps the most intuitive and widely considered measure Mehrabi et al. (2021) when

gold standard labels are unavailable. Specifically, SR estimates a labeler’s bias by the difference be­

tween the proportion of positive labels the labeler assigns to instances from different groups. For
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example, the difference of promotion rates among male and female employees.

ĜAP
k

sr =

|S
Lk |∑

i=1

I[Y ′k = 1|A = a]−
|S

Lk |∑
i=1

I[Y ′k = 1|A =∼ a] (17)

6 RESULTS

In this section, we assess the performance of the proposed approach and compare it with that of

the benchmark, SR, under the different settings described in Section 5.

Table 1. Spearman’s rank­order ρ for MBA (ours) and the benchmark SR when labelers exhibit
correct within­group ordering, ideal setting for SR. The ranks produced by MBA and SR both
show significant correlation with true rank.

Dataset Setting MBA (ours) SR
Adult P (Y = 1|A) = 20% 0.947*** 0.932**
Credit P (Y = 1|A) = 20% 0.772* 0.936***

Employee P (Y = 1|A) = 20% 0.895*** 0.956***
Readmission P (Y = 1|A) = 20% 0.934*** 0.979***

Adult P (Y = 1|A) = 30% 0.970*** 0.966***
Credit P (Y = 1|A) = 30% 0.860** 0.973***

Employee P (Y = 1|A) = 30% 0.918*** 0.983***
Readmission P (Y = 1|A) = 30% 0.979*** 0.989***

*: p­value < 0.05, indicating that the correlation coefficient is different
from zero and that a linear relationship exists, **: p < 0.01, and ***: p
< 0.001.

Table 1 and 3 show Spearman’s rank­order correlation and their statistical significance of the

proposed method, MBA, and of the benchmark SR, for settings where labelers exhibit either correct

or incorrect within­group orderings, respectively. Table 2 and 4 show Pearson correlation coeffi­

cients and their statistical significance of the proposed method for the same settings. In each settings

and data set, we show results for different class distributions.

Table 3 and 4 show the two methods’ performances when labelers exhibit correct within­group

orderings, a scenario in which the baseline, SR, is optimal. The results indicate that MBA performs

comparably well in this setting. When labelers conditionally misestimate the interaction of the sensi­

tive attribute with a feature ( e.g., sex × age for the Adult dataset), while appearing to have the same
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Table 2. Pearson correlation coefficients r for MBA (ours) and the benchmark SR when labelers
exhibit correct within­group ordering, ideal setting for SR. The ranks produced by MBA and SR
both show significant correlation with true rank.

Dataset Setting MBA (ours) SR
Adult P (Y = 1|A) = 20% 0.942*** 0.943***
Credit P (Y = 1|A) = 20% 0.775* 0.922***

Employee P (Y = 1|A) = 20% 0.901*** 0.961***
Readmission P (Y = 1|A) = 20% 0.928*** 0.981***

Adult P (Y = 1|A) = 30% 0.964*** 0.973***
Credit P (Y = 1|A) = 30% 0.856** 0.976***

Employee P (Y = 1|A) = 30% 0.931*** 0.982***
Readmission P (Y = 1|A) = 30% 0.975*** 0.992***

*: p­value < 0.05, indicating that the correlation coefficient is different
from zero and that a linear relationship exists, **: p < 0.01, and ***: p
< 0.001.

Table 3. Spearman’s rank­order ρ for MBA (ours) and benchmark SR when labelers exhibit in­
correct within­group ordering. The ranks produced by MBA (ours) shows significant correlation
with true rank, while the benchmark SR yielded all labelers having the same bias.

Dataset Setting MBA (ours) SR
Adult P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.928*** ­0.128
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.905** 0.079

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.841* 0.263
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.975*** ­0.337

Adult P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.942*** ­0.058
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.942*** 0.038

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.918*** 0.477
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.977*** 0.287

*: p­value < 0.05, indicating that the correlation coefficient is different from zero and
that a linear relationship exists, **: p < 0.01, and ***: p < 0.001.

selection rates, Table 3 and 4 show that the SR benchmark exhibits significantly poor performance

and thus cannot be relied on in practice. By contrast, MBA produces an accurate rank of labelers’

bias (GAP Ŷ |Y, A) that is significantly correlated to the true rank (GAP Y ′|Y, A).

Figures 3, 4, 5, 6, show predicted bias, GAP Ŷ |Y, A, produced by MBA and the SR benchmark,

as well as labelers’ true bias, GAP Y ′|Y, A, with 90% confidence bars. Recall that our goal is to re­

cover the correct ranking of labelers’ biases; hence, in these plots, we examine whether (and the de­

gree to which) a labeler’s bias was correctly positioned relative to others, as shown for the true bi­
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Table 4. Pearson correlation coefficients r for MBA (ours) and benchmark SR when labelers
exhibit incorrect within­group ordering. The ranks produced by MBA (ours) shows significant
correlation with true rank, while the benchmark SR yielded all labelers having the same bias.

Dataset Setting MBA (ours) SR
Adult P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.927*** ­0.084
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.922*** 0.080

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.881** 0.322
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 20% 0.964*** ­0.329

Adult P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.934*** ­0.031
Credit P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.938*** 0.047

Employee P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.922*** 0.637
Readmission P (Y = 1|A) = P (Y ′ = 1|A) = 30% 0.972*** 0.543

*: p­value < 0.05, indicating that the correlation coefficient is different from zero and
that a linear relationship exists, **: p < 0.01, and ***: p < 0.001.

Figure 3. Predicted GAP Ŷ |Y, A by MBA (ours) and SR, and true GAP Y ′|Y, A when labelers
exhibit correct within­group ordering, and for 20% positive rate. Both MBA’s and SR’s ranking
have significant correlation with true rank.
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Figure 4. Predicted GAP Ŷ |Y, A by MBA (ours) and SR , and the true GAP Y ′|Y, A when labelers
exhibit correct within­group ordering, and 30% positive rate. MBA estimates follow the true
rank better than SR.

ases. Figures 3, 4 show the ranking produced by the two methods for settings where labelers exhibit

correct within­group ordering. Interestingly, even though both methods show high correlation with

labelers’ true rank in Table 1 and 2, the figures reveal how MBA approximates well both the relative

ranking as well as the magnitude of the biases in all settings.

Figures 5 and 6 evaluate settings when labelers exhibit incorrect within­group orderings. This

assessment visualizes the failure of the benchmark in this setting, which incorrectly yields all label­

ers as having the same (null) bias. Meanwhile, while MBA tends to underestimate the magnitude of

the biases, it effectively recovers the correct rank of labelers’ relative biases.
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Figure 5. Predicted GAP Ŷ |Y, A by (ours) and SR, and the true GAP Y ′|Y, A when labelers predict
incorrect within­group ordering, and 20% positive rate. MBA yields correct ranking of labelers’
biases while SR misestimates the biases to be apprixmately the equivalent.

7 DISCUSSION AND FUTUREWORK

In this paper, we tackle the problem of assessing biases encoded in labelers’ decisions. We pro­

pose an algorithm that returns an assessment of labelers’ relative biases for a set of labelers, without

requiring ground truth labels to be available for the instances assessed by the labelers, nor any over­

lap in the instances assessed across labelers’. The proposed approach estimates biases in terms of

gaps in true positive rates, and we illustrate its performance by comparing it to the typically used

alternative, selection rates (SR), which has the advantage of not requiring any ground­truth, but, as

a result, also cannot account for the correctness of labelers’ decisions. After providing theoretical

guarantees for the proposed approach, we conduct an empirical assessment in which we consider

different scenarios, both favorable and unfavorable for the baseline, SR. We show that our method
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Figure 6. Predicted GAP Ŷ |Y, A by MBA, SR, and the true GAP Y ′|Y, A when labelers predict in­
correct within­group ordering, and 30% positive rate. MBA infers the correct ranking of lablers
biases, while SR failes to do so.

performs well in what constitutes a best­case­scenario for SR, and then study a scenario in which SR

can be misleading, revealing the advantages of the proposed approach in providing consistently good

performance in both settings. While assessments of decisions and labeling biases based on selection

rates are widespread, our results show how SR may fail to differentiate between labelers exhibit­

ing very different degrees of biases and are prone to being gamed by adversaries. The proposed ap­

proach addresses this problem and lays the groundwork towards reliable bias assessment in labeling.

In future work we plan on conducting empirical studies using human­generated labels on a variety of

tasks, to characterize both when the method succeeds and when the method fails in practice.

Increasing transparency in labelers’ biases may have a variety of benefits. We are interested in

identifying productive ways to bring the relative bias assessment to bear on related research ques­
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tions and downstream tasks, including utilizing the output of our method when training an algorithm

on human­generated labels. We are also interested in human­centered interventions that provide this

piece of information to labelers as part of strategies meant to counter cognitive biases during label­

ing or decision­making. Finally, we intend to deepen our study of adversarial settings and modes of

failure to better understand how and when different quantitative measures of quality and bias may be

misleading and gameable, in order to better characterize its limitations and caution against its misuse

as mechanisms for automated assessments.



A ML­based Framework towards Assessment of Labelers’ Biases

Bibliography

Aczel, B., Bago, B., Szollosi, A., Foldes, A., and Lukacs, B. 2015. “Measuring individual differences

in decision biases: methodological considerations,” Frontiers in psychology (6), p. 1770.

Allen, J., Arechar, A. A., Pennycook, G., and Rand, D. G. 2020. “Scaling up fact­checking using the

wisdom of crowds,” Preprint at https://doi org/1031234/osf io/9qdza .

Barabas, C., Virza, M., Dinakar, K., Ito, J., and Zittrain, J. 2018. “Interventions over predictions:

Reframing the ethical debate for actuarial risk assessment,” in Conference on Fairness, Account­

ability and Transparency, , PMLR.

Binns, R. 2020. “On the apparent conflict between individual and group fairness,” in Proceedings of

the 2020 conference on fairness, accountability, and transparency, .

Chapman, G. B., and Elstein, A. S. 2000. “Cognitive processes and biases in medical decision mak­

ing.” In G B Chapman & F A Sonnenberg (Eds), Decision making in health care: Theory, psy­

chology, and applications (pp 183–210) .

Cohen, M. S. 1993. “Three paradigms for viewing decision biases,” Decision making in action:

Models and methods (1), pp. 36–50.

Dastin, J. 2018. “Amazon scraps secret AI recruiting tool that showed bias against women,” in Ethics

of Data and Analytics, , Auerbach Publications, pp. 296–299.

Davani, A. M., Díaz, M., and Prabhakaran, V. 2021. “Dealing with disagreements: Looking beyond

the majority vote in subjective annotations,” arXiv preprint arXiv:211005719 .

De­Arteaga, M., Romanov, A., Wallach, H., Chayes, J., Borgs, C., Chouldechova, A., Geyik, S.,

Kenthapadi, K., and Kalai, A. T. 2019. “Bias in bios: A case study of semantic representation

bias in a high­stakes setting,” in proceedings of the Conference on Fairness, Accountability, and

Transparency, .



A ML­based Framework towards Assessment of Labelers’ Biases

De Martino, B., Kumaran, D., Seymour, B., and Dolan, R. J. 2006. “Frames, biases, and rational

decision­making in the human brain,” Science (313:5787), pp. 684–687.

Dong, W., Saar­Tsechansky, M., and Geva, T. 2021. “A Machine Learning Framework Towards

Transparency in Experts’ Decision Quality,” arXiv preprint arXiv:211011425 .

Feldman, M. 2015. Computational fairness: Preventing machine­learned discrimination, Ph.D.

thesis.

Gao, R., and Saar­Tsechansky, M. 2020. “Cost­accuracy aware adaptive labeling for active learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, , vol. 34.

Geva, T., and Saar­Tsechansky, M. 2021. “Who Is a Better Decision Maker? Data­Driven Expert

Ranking Under Unobserved Quality,” Production and Operations Management (30:1), pp. 127–

144.

Hardt, M., Price, E., and Srebro, N. 2016. “Equality of opportunity in supervised learning,” Ad­

vances in neural information processing systems (29), pp. 3315–3323.

Kamiran, F., and Calders, T. 2010. “Classification with no discrimination by preferential sampling,”

in Proc. 19th Machine Learning Conf. Belgium and The Netherlands, , Citeseer.

Kazai, G., Kamps, J., and Milic­Frayling, N. 2013. “An analysis of human factors and label accuracy

in crowdsourcing relevance judgments,” Information retrieval (16:2), pp. 138–178.

Kodiyan, A. A. 2019. “An overview of ethical issues in using AI systems in hiring with a case study

of Amazon’s AI based hiring tool,” Researchgate Preprint pp. 1–19.

Li, A. H., and Bradic, J. 2018. “Boosting in the presence of outliers: adaptive classification with non­

convex loss functions,” Journal of the American Statistical Association (113:522), pp. 660–674.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. 2021. “A survey on bias and

fairness in machine learning,” ACM Computing Surveys (CSUR) (54:6), pp. 1–35.



A ML­based Framework towards Assessment of Labelers’ Biases

Menon, A. K., Van Rooyen, B., and Natarajan, N. 2016. “Learning from binary labels with instance­

dependent corruption,” arXiv preprint arXiv:160500751 .

Miranda Jr, R., MacKillop, J., Meyerson, L. A., Justus, A., and Lovallo, W. R. 2009. “Influence of

antisocial and psychopathic traits on decision­making biases in alcoholics,” Alcoholism: Clinical

and Experimental Research (33:5), pp. 817–825.

Nowak, S., and Rüger, S. 2010. “How reliable are annotations via crowdsourcing: a study about

inter­annotator agreement for multi­label image annotation,” in Proceedings of the international

conference on Multimedia information retrieval, , ACM.

Suresh, H., and Guttag, J. V. 2019. “A Framework for Understanding Unintended Consequences of

Machine Learning,” CoRR (abs/1901.10002).

URL http://arxiv.org/abs/1901.10002

Violago, V., and Quevada, N. 2018. “AI: The Issue of Bias,”Managing Intell Prop (277), p. 32.


