Optimal No-Regret Learning in Repeated First-Price Auctions

First-price auctions have very recently swept the online advertising industry, replacing second-price auctions as the predominant auction mechanism on many platforms for display ads bidding. This shift has brought forth important challenges for a bidder: how should one bid in a first-price auction, where unlike in second-price auctions, it is no longer optimal to bid one’s private value truthfully and hard to know the others’ bidding behaviors? In this paper, we take an online learning angle and address the fundamental problem of learning to bid in repeated first-price auctions. We discuss our recent work in leveraging the special structures of the first-price auctions to design minimax optimal no-regret bidding algorithms.